
DPB: A Benchmark for Design Pattern Detection Tools

Francesca Arcelli Fontana, Andrea Caracciolo, Marco Zanoni
Dipartimento di Informatica, Sistemistica e Comunicazione

University of Milano Bicocca
Milano, Italy

Email: {arcelli,marco.zanoni}@disco.unimib.it, a.caracciolo1@campus.unimib.it

Abstract—Many activities can be done to support software
evolution and reverse engineering of a system. Design pattern
detection is one of these activities. It is useful to gain knowledge
on the design issues of an existing system, on its architecture
and design quality, improving the comprehension of the system
and hence its maintainability and evolution. Several tools for
design pattern detection have been developed in the literature,
but they usually provide different results when analyzing the
same systems. Some works have been proposed in the literature
to compare these results, but a standard and widely-accepted
benchmark is not yet available. In this work we propose our
benchmark web application for design pattern detection, based
on a community driven evaluation.

Keywords-design pattern detection; benchmark; meta-model.

I. INTRODUCTION

Software architecture reconstruction and design pattern
detection are important and useful for reverse engineering.
Design pattern detection (DPD) is a topic that received a
great interest during the past years. Finding design pattern
(DP) [1] instances in a software system can give useful
hints for the comprehension of a software system and on
what kind of problems have been addressed during the de-
velopment of the system itself. Moreover, they are important
during the re-documentation process, in particular when the
documentation is poor, incomplete, or not up-to-date.

Several DPD approaches and tools have been developed,
exploiting different techniques for the detection such as
fuzzy logic, constraints solving techniques, theorem provers,
template matching methods, and classification techniques
[2]–[10]. In spite of the many approaches proposed, the
results obtained are often quite unsatisfactory and different
from one tool to another.

Many tools find many pattern candidates which are false
positives but other correct ones are not found. One common
problem in DPD is the so called variant problem: DPs can
be implemented in several ways, often different from one
another. The main variants of each pattern are described
in the catalog of Gamma et al. [1]. Other patterns are
applied when the context of the application requires them.
These variants cause the failure of most pattern instance
recognition tools using rigid detection approaches, which
are based only on canonical pattern definitions.

Hence the comparison of the results provided by the
different tools is important, to be able to evaluate the best
approach and tools. Some work regarding the comparison of
DPD tools is described in the next section.

We analyzed and faced the problem related to the different
results provided by the DPD tools, because we are devel-
oping MARPLE (Metrics and Architecture Reconstruction
PLug-in for Eclipse) [11] whose main aims are related to
DPD and software architecture reconstruction. The develop-
ment of MARPLE brought to the definition of a meta-model
able to represent DPD results, and we used that model as a
base for the work described in this paper.

The aim of this work is to introduce and describe a
benchmark web application to be used by software engineers
to compare DPD tools. We propose to the DPD community
some mechanisms to obtain agreed results and to make them
easily available. Our approach is characterized by:
• a general meta-model for design pattern representation;
• a way of comparing results coming from different tools;
• the possibility to evaluate instances and discuss about

their correctness.
The adoption by the DPD community of a benchmark

can improve the cooperation among the researchers and the
reuse of tools written by others instead of the development
of new ones.

The paper is organized through the following Sections:
in Section II we describe the principal related works, in
Section III we introduce the main functionalities of our
application, in Section IV the meta-model used to represent
DP definitions and instances, in Section V we introduce
the algorithm developed for comparing a given pair of DP
instances. Finally in Section VI we conclude by outlining
some future developments of our research.

II. RELATED WORK

Undertaking a comparison among design pattern detec-
tion tools is a difficult task. Few benchmark proposals for
the evaluation of design pattern detection tools have been
presented in the literature. We already described our first
proposal for a benchmark in previous work [12], and we
extend and finalize it in this paper. The only other known
effort on the same topic is called DEEBEE (DEsign pattern

Evaluation BEnchmark Environment) [13], a web applica-
tion for evaluating and comparing design pattern detection
tools. This application features a rich set of useful function-
alities, but lacks usability, offers poor support to several key
tasks and pays little attention to content organization and
information presentation. As a result, it feels hard to find
and compare data, provide a solid and justified evaluation
and get an overall picture of the emerging benchmark results.
Moreover, the meta-model used to describe pattern instances
appears to be weak and not formalized. Our solution is able
to correct most of the above highlighted shortcomings.

P-MARt [14] is a repository of pattern-like micro-
architectures, which has the purpose to serve as baseline to
assess the precision and recall of pattern identification tools.
The repository contains the analysis of specific versions of
different open source programs. We added the contents of
P-MARt into our benchmark application in order to provide
an interactive exploration of those data.

The availability and simple interchange of DPD results
could be helpful also to support DPD techniques like the
one proposed by Kniesel and Binum [15]: they compared
different design patterns detection tools and proposed a
novel approach based on data fusion, built on the synergy of
proven techniques, without requiring any re-implementation
of what is already available.

Another common exchange format for DPD tools has been
proposed, called DPDX [16], with the aim to overcome the
limitations coming from the existence of different output
formats. DPDX provides the basis for an open federation
of tools that perform comparison, fusion, visualization, and-
or validation of DPD results. The main differences between
DPDX and the model used in our application are described
in Section IV.

In our work, we aim to provide an online application to
support the comparison of DPD results, with the benefit
of having a flexible underlying model and a collaborative
environment.

III. WEB APPLICATION DESCRIPTION

The web application is available online [17] and is sub-
divided in:
• a search section, which lets the user find the results of

a particular analysis, according to different parameters;
• a compare section, which allows to compare the in-

stances found by different tools on the same input
project;

• a browse section, which provides a tree-like view of
the contents of the application.

• a documentation section, containing some references
and guides to use the application; in addition the home
page briefly introduces the system functionalities and
provides a step by step tutorial;

Through these different kinds of sections, the user can
obtain a detailed view of each pattern instance loaded on

the application. Each instance is described by a set of
five different informative views and can be rated through a
functionality which allows the user to express an evaluation
of the instance.

All the above functionalities are visible to all users; if a
user wants to load a new analysis into the application, he
must be registered and upload the XML file containing the
instances, as shown in Figure 1. In our web application, an
analysis consists of the combination of a set of instances, a
description, the name of the used DPD tool and the analyzed
project.

Figure 1. Example of analysis loading

A. Views

Each DP instance can be viewed through three graphical
representations:
• as a UML class diagram (view number 1 in Figure

2), where all the classes referenced in the instance are
displayed as inter-connected entities labeled with the
name of their respective role;

• as a dynamic tree graph (view number 2 in Figure 2),
which provides a graphical tree-structure representation
of the instance, where the nodes represent the elements
contained in the associated instance model (see section
IV);

• as a nested boxes diagram (view number 3 in Figure
2), where classes are grouped by role into hierarchically
ordered boxes.

The first view in Figure 2 is generated by a tool (de-
veloped in the context of this project) which is able to

build a class diagram containing the elements being part
of the chosen DP instance. This task is accomplished by
analyzing the source code of the project in which the
instance was found. This tool currently supports any kind of
entity (class, method, field) allowed by the meta-model (see
section IV) and is able to recognize a subset of the standard
UML relationships (generalization, realization, dependency)
as well as the following extra relationships: “declares”, “is
nested in”.

The second a third view in Figure 2 are simple graphical
translations of the instance structure as it is saved in the
application. The second view is delivered as a Java applet
and allows the user to zoom, re-arrange (manually or by
selecting a predefined auto-layout algorithm) and edit any
displayed element. The result of these modifications can
eventually be saved locally as an image. The third view in
Figure 2 is built using just simple HTML code. Each box
represents either a level, a level instance or a role. If there
are more roles, of the same kind, associated to the same
level instance, those roles are grouped in one single box
whose name is the name of the grouped roles. The elements
contained in a role box, are the values associated to the
roles grouped in the box. Each role box features a different
background color which defines the type of role it represents
(class, method or field). If possible, a link pointing to the
source code where the element is defined is placed beside
the role value.

The first view in Figure 2 provides a synthetic and easy
to read overview of a given instance, while the second
and third views offer a more detailed representation of its
structure. These last two views are useful in case the user
has familiarity with the meta-model described in section
IV and needs to analyze the pattern structure in its full
complexity (i.e.: distinguishing roles by their position in the
level hierarchy).

In addition to the above described views, the application
provides the following additional views:
• the source code of any class, method and field refer-

enced in the instance (only if explicitly specified in the
uploaded input file);

• the Javadoc page of any class, method and field refer-
enced in the instance (only for instances belonging to
Java projects).

The first additional view contains color-coded and naviga-
ble source code. The code line of the elements contained in
the DP instance, if not explicitly specified during the upload
process, is estimated by doing a simple full text search on
the displayed source file. The last additional view provides
navigable pages, as generated by the javadoc tool bundled
with the Java SDK.

Moreover, it is also possible to display two facing views
in a full screen page overlay. This allows to easily compare
and cross-analyze the information provided from two of the
five above mentioned views.

We currently host more than 700 DP instances. Some of
them have been generated by 2 DPD tools (DPD-Tool [6]
and WOP [9]), others have been extracted from a verified
dataset (P-MARt [14]).

Figure 2. Three graphical views of the same instance

B. Evaluation
After viewing an instance, the user is invited to express

his opinion regarding the correctness of the reported instance
(see Figure 3). To do so, he needs to specify the following
information:
• a score in the range of 1 to 5 “Stars”, where 1 means

the instance is fully incorrect, and 5 means it is correct;
• a comment to argument the evaluation;
To avoid semantic misinterpretation, each rating option is

associated with a textual description.
Other users are able to express an agreement or disagree-

ment (“Vote”) with a previous evaluation. The difference
between positive and negative “Votes” defines the number
of points gained by that evaluation.

If this number is below a certain threshold, the evaluation
(and all the related comments) is automatically collapsed
and hidden from the user’s sight.

The overall rating associated with the instance is com-
puted as the average of “stars” weighted with the number
of points associated to each evaluation. This information is
used in the search results (see Figure 4) to have an immediate
idea about the number of correct instances found within a
certain project analysis.

Discussions can be started by adding comments to existing
evaluations. All existing comments are organized in the form
of a forum thread, allowing users to easily follow the flow
of conversations and to reply to specific messages without
having to specify the context of their comment.

We believe that this community driven system of classi-
fying found instances will provide good common datasets,
for the test of new tools and the enhancement of the existing
ones.

To obtain reliable and consistent results, we only accept
evaluations provided by users with proven experience in the
field (i.e.: DPD tool developers) and/or sufficient theoretical
background (i.e.: students having attended at least one course
covering GoF DPs).

We have currently collected more than 160 evaluations,
and we hope to see more in the future.

Figure 3. An example of evaluation

C. Search

The user can search a pattern instance according to the
chosen programming language, project, detection tool, and
design pattern. An example of a search session is shown in
Figure 4. In the user interface, whenever the user chooses a
filter, the page shows the available further filters, populating
the right hand placed select menu. In each selection list, it is
possible to choose more than one value, to make the search
more flexible and personalized.

Figure 4 shows an example of search parameters and
results, in the case the user looks for the analyses of projects
written in the Java language, on the JHotDraw 5.1 and
MapperXML 1.9.7 projects, analyzed by the DPDTool 4.5
and WOP 1.3 tools and filtered on the “Composite” and
“Template Method” design patterns.

Figure 4. Example of a pattern instance search result

The user can specify the minimum overall rating score
a pattern instance must have to be considered a correct in-
stance. In addition, the user can specify the absolute number
of “reactions” (evaluations plus “votes”) each instance must
have to be safely included in the overall correct/not correct
count. Currently, the application allows the users to choose a
number of stars in the range 1-5, and a number of “reactions”
from 0 to 20.

The table (see lower part of Figure 4) shows the results,
with the analyses generated by the selected tools on the rows
and the projects with the patterns on the columns. Each
cell is the combination of an analysis, made by a certain
tool, and a pattern belonging to a project. It contains the
number of instances considered correct and the number of
instances considered incorrect, respectively placed under the
labels “T” and “F”. An instance is considered correct if it has
a number of “reactions” and an overall rating score which
are both greater than or equal to the values specified in the
above described ”stars” and ”reactions” filters.

In the example, the results contain 2 analyses for each of
the selected DPD tools (38, 42 for DPD Tool 4.5 and 46,
56 for WOP 1.3). Looking at the numbers contained in the
first row, we see that the analysis named “38” contains no
instances of the pattern Composite, and some instances of
Template Method. Of those instances, 1 has been evaluated
as a false positive and none has yet been proven correct.
Analysis “38” only contains results associated to the JHot-
Draw project.

When an analysis does not contain instances of a particu-
lar design pattern in a particular project, the corresponding
cell contents are replaced by a “-” in light grey. If the project

has not even been analyzed, the cells are empty.

D. Comparison

The user can compare the results produced by two dif-
ferent analyses, obtained by two different tools, on the
same project and for the same chosen pattern definition.
The comparison results (see Figure 5) are shown in a table
where the two instance sets, found in the context of the
selected two analyses, are shown one on the rows and
the other on the columns. The cells of the table contain
values indicating the similarity of the corresponding couple
of instances. The similarity is currently evaluated through an
algorithm described in section V. To make reading easier,
the background color of each cell is proportional to its
percentage value, according to the selected color scheme
(red:0% to green:100% or white:0% to blue:100%).

Figure 5. Example of a result comparison

Figure 5 shows an example of comparison: the user
chooses to compare the instances of the Template Method
pattern found on project QuickUML 2001 by:
• the DPD Tool 4.5 tool in the analysis named “regular

scan with all DPs enabled”;
• the WOP 1.3 tool in the analysis named “regular scan

with all DPs enabled”.
The table shows that each tool found four instances, and

that for example instances #1911 and #526 are very similar,
with a score of 94%, and instances #1911 and #515 are very
different, having a score of only 2%. The numbers in bold

are the highest value in their row: in fact the last option
selected is to highlight the highest value of each row; it is
also possible to do the same on the columns. This option
simplifies the task of identifying the most similar pairs of
instances.

The view can be also filtered removing all the rows or
columns containing values which are less than or equal to a
certain specified amount. This allows to simplify the table
and to include only meaningful results.

To support the user in the process of identifying valid
instances, we also added various sets of instances, which
have been collected and verified by human experts. These
instances have all been extracted from a repository called
“P-MARt” [14]. In order to compare a DPD tool generated
analysis against the said set of instances, the user needs to
select an analysis created by the tool called “P-MARt”.

Clicking on the value representing the similarity score
of two instances, opens up a new page which provides
a detailed outlook of all the differences existing between
those instances (see Figure 6). The information contained
in this page is presented in the form of a single “nested
box” diagram (see section III-A), which combines the roles
of both selected instances into one merged representation,
where equivalent role values are grouped in one box and
displayed side by side. Spotting differences is made easy
through the coloring of role values (strings that are equal
are colored in green, while all the others are red) and the
option to explore the data by applying filters.

E. Browsing

The Browse section offers a tree view of the content of
the application. Basically it allows the user to find all the
analyses made by a tool on a project: the user can choose
as entry point both the available projects or tools. Whenever
the user clicks on one of them, the page shows the analyses
available in combination with the other. Clicking on the
name of a certain analysis a page is shown, containing the
list of all found DP instances, grouped by design pattern.
This feature can be experimented by accessing the Browse
section [18] of the DPB website.

IV. DP REPRESENTATION META-MODEL

In order to work on design pattern instances, we need
a way to represent them in some kind of data structure.
In [19], we presented a meta-model for the representation
of DP definitions and instances. That meta-model has been
adapted to be used to represent DP definitions and instances
on the DPB web application.

The model specifies that a design pattern can be defined
from the structural point of view using the roles it contains
and the cardinality relationship between couple of roles. A
similar approach is also suggested by Guéhéneuc et al. [20].
A design pattern is defined as a tree whose nodes are called
Levels; each level has to contain at least one of the roles

Figure 6. Example of a detailed comparison

of the pattern and it can contain other recursively nested
levels. Figure 7 shows the tree structure of the LevelDef
class (representing the level definition), and the RoleDef s
that it owns; finally, DpDef defines that a design pattern
definition is a tree having as root one LevelDef.

Figure 7. DP Definition UML class diagram

When two roles are contained within the same level, they

are in a one-to-one relationship; instead when a role is placed
in a nested level it means that for each instance of the roles in
the parent level, there can be many sets of roles of the child
level. The most common case is when a pattern defines that a
class must extend another class. In most cases we identify a
single instance of that pattern as the parent class connected
with all the children classes. Instances are modeled as in
Figure 8; the model is simply an extension of the definition,
as it models the instantiation of the concepts contained
in the definition: a RoleAssociation is the realization of a
RoleDef, a LevelInstance is the realization of a LevelDef,
and so on. The only complex detail is the splitting of Level
and LevelInstance; the explanation is that each LevelDef is
instantiated as a LevelInstance when the RoleAssociations
are filled, but to define a child Level, we must specify which
particular parent instance it belongs to.

The XML format for specifying a design pattern instance
is modeled according to the representation model, so it
follows the same concepts. The XML Schema Definition,
which the submitted XML file must comply to, is available
at [21]; moreover, the list of the pattern definitions the
application supports, is available at [22].

To have more chances of being able to compare results
coming from different tools, currently users cannot supply
their own pattern definitions. When the application will be
more tested and filled with data, we will add this func-
tionality. Meanwhile we accept and encourage suggestions
coming from the users about new definitions or mistakes in
the current ones.

In listing 1, we report an XML file example that represents
an instance of an Abstract Factory design pattern.

The file refers to the roles Abstract Factory, Concrete
Factory, Abstract Product, Concrete Product. Each of them
is associated to a class name, an optional location path,
line number and comment, and is organized following the
Abstract Factory definition.

The here described meta-model has the same purpose as
the previously mentioned exchange format DPDX. The main
differences between these two models can be summarized as
follows: the DPDX format is much more verbose, extensive
and difficult to read, provides no shared model for DP
definitions and does not allow for simple automatic schema
compliance verification. All these elements make the DPDX
meta-model not suitable for practical use in a web-based
environment (files tend to get too large and difficult to
parse), force the users to provide more information than
necessary, and make it difficult to create a shared repository
of reference models to which any DP instance has to comply
to. The meta-model described in this section provides a more
essential way of describing data, a layered data structure
which allows easy organization of multi-valued roles, and
an effective encoding policy which supports fast and easy
schema compliance verification.

Figure 8. Model UML class diagram

V. COMPARISON ALGORITHM

In the current version of the benchmark application, we
defined and implemented a comparison algorithm specifi-
cally developed for the meta-model defined in the previous
section. The algorithm tries to express the similarity of two
instances giving more weight to the parent roles and less to
the children roles, and produces a number between 0 (total
difference; meaning that all role values are different) and 1
(total equivalence; meaning that all role values are equal).

A. Algorithm description

Our algorithm gives a descending score to each level depth
in the pattern definition according to the formula 1.

Listing 1. Example of Abstract Factory instance
<analysis><pattern name=”AbstractFactory”><patternInstance>
<level><levelinstance>
<role name=”AbstractFactory” value=”foo.Class1”>
<location file=”foo/Class1.java” line=”13” />
<comment>Some text</comment>

</role>
<level><levelinstance>
<role name=”AbstractProduct” value=”foo.Class1”>
<location file=”foo/Class1.java” line=”53” />
<comment>Some text</comment>

</role>
<level><levelinstance>
<role name=”ConcreteProduct” value=”foo.Class1”>
<location file=”foo/Class1.java” line=”93” />
<comment>Some text</comment>

</role>
</levelinstance></level>

</levelinstance></level>
<level><levelinstance>
<role name=”ConcreteFactory” value=”foo.Class1”>
<location file=”foo/Class1.java” line=”93” />
<comment>Some text</comment>

</role>
<level><levelinstance>
<role name=”ConcreteFactory createProduct”

value=”foo.Class.Method(java.lang.String,int)”>
<location file=”foo/Class1.java” line=”133” />
<comment>Some text</comment>

</role>
</levelinstance></level>

</levelinstance></level>
<level><levelinstance>
<role name=”AbstractFactory createProduct”

value=”foo.Class.Method(java.lang.String,int)”>
<location file=”foo/Class1.java” line=”133” />
<comment>Some text</comment>

</role>
</levelinstance></level>

</levelinstance></level>
</patternInstance></pattern></analysis>

depthScoredepth = log10(treeHeight− depth) + 1 (1)

This weight assignment schema is based on the assump-
tion that roles forming a given DP definition are placed on
levels ordered by decreasing importance.

The use of a logarithmic function is aimed to reduce the
difference in weight between the levels of the pattern.

Consider the following example: in a definition with only
a parent level and a child level, the parent level depth takes
a score of log10(2) + 1 and the child level depth takes a
score of log10(1) + 1; with three level depths, the first one
(the root) would take weight log10(3) + 1, and so on.

Then each level in the definition takes the score of the
depth it belongs to, and an overall score is calculated as the
sum of the score of all levels. Finally a weight is assigned
to each level dividing the level score by the overall score.
In this way the sum of all the weights is 1. The following
formula sums up what said above:

weighti =
depthScorei∑treeH

j=0 depthScorei · |levelsi|
(2)

where:
• treeH is the height of the tree structure representing

the analyzed pattern.
• levelsi is the set of all the levels located at depth i.
• depthScorei is the score associated to depth i, as

defined in formula 1.

When the weights are set, the algorithm compares a
couple of instances starting from the root and recursively
distributing the weight of each level on its level instances.
The similarity score between two equivalent levels is com-
puted by the following equation:

simL(l1, l2, depth) =∑n
i=0 simLI (subLi1,i, subLi1,i

′′) · weightdepth · 1/n
+
∑m

i=0 simL(subL1,i, subL1,i
′, depth+ 1)

simLI (li1, li2) =
|sharedRoles|

max(|subRoles1|,|subRoles2|)
(3)

where:
• l1 and l2 are the two levels, located at a certain depth,

which are to be compared. They respectively belong to
the first and the second instance to be compared.

• subLi1,i is the i-th instance of level l1.
• subLi1,i

′′ is the instance of level l2, which is most
similar to subLi1,i. Similarity between level instances
is calculated by applying the function simLI , which
simply provides a percentage based on the number of
roles of the same kind, associated to the level instances
passed as arguments, sharing the same values.

• subL1,i is the i-th child level of level l1.
• subL1,i

′ is the child level of l2 which is equivalent
to subL1,i. Equivalence between levels is deduced by
comparing the references to the common DP definition.
If those references are identical, the two levels are
equivalent.

• weightdepth is the weight associated to the levels
located at the specified depth, as defined in formula
2.

• n = max(|subLis1| , |subLis2|) where subLisi is the
set of instances of li.

• m is the number of child levels of l1 (or ,equivalently,
of l2).

• sharedRoles is a set made of all roles which are
common to both li1 and li2.

• subRolesi is the set of roles associated to lii

Both functions described in formula 3 are symmet-
ric with respect to their first two arguments, mean-

ing that simL(l1, l2, depth) = simL(l2, l1, depth) and
simLI (li1, li2) = simLI (li2, li1).

The overall similarity score between two DP instances(i1
and i2) is calculated as follows:

sim(i1, i2) =

simLI (root1, root2) · weight0
+
∑n

i=0 simL(subL1,i, subL1,i
′, 1)

[if simLI(root1, root2) > 0]

0 [otherwise]

(4)

where:
• rooti is the root level instance associated to the i-th DP

instance.
• subL1,i is the i-th child of the level instance root1.
• subL1,i

′ is the child of level instance root2, which is
equivalent to subL1,i.

• n = max(|subLs1| , |subLs2|) where subLsi is the set
of children of level instance rooti.

B. Example

To better understand how the comparison algorithm
works, consider the simple example described below. Listing
2 contains the description of two Abstract Factory instances.
Both instances are represented as tree structures where each
line corresponds to a node and indentation is used to specify
hierarchical relationships.

Each node of type “LevelInstance” is formatted as fol-
lows:

LI : NodeLabel => Roles :
{RoleName : RoleV alue, ..}

The roles listed on the right side, are those to which the
level instance element is associated to. Roles are considered
equivalent if they have the same name and value.

Each node of type “Level” is formatted as follows:

L : NodeLabel => ID : IDV alue

Two levels are considered equivalent if they have the same
IDValue.

Now let’s simulate the steps needed to calculate the
similarity value between these two instances. First of all,
we need to define the weights to assign to each level based
upon the depth it is located at:

depthScore0 = log10(3− 0) + 1 = 1.48
depthScore1 = log10(3− 1) + 1 = 1.3
depthScore2 = log10(3− 2) + 1 = 1

(5)

∑treeH
j=0 depthScorei · |levelsi| =

= 1.48 · 1 + 1.3 · 2 + 1 · 1 = 5.08
(6)

Listing 2. Two Abstract Factory instances to be compared
== ==
i n s t a n c e 1 i n s t a n c e 2
== ==
LI : Root11 => Roles : {AF :A} LI : Root21 => Roles : {AF :A}

L : L 11 => ID : 1 L : L 21 => ID : 1
LI : LI 11 => Roles : {AP : B , AP : C} LI : LI 21 => Roles : {AP : B , AP : C}

L : L 12 => ID : 2 L : L 22 => ID : 2
LI : LI 12 => Roles : {CP :D, CP : E , CP : F} LI : LI 22 => Roles : {CP :D, CP : E}
LI : LI 13 => Roles : {CP :G} LI : LI 23 => Roles : {CP :X}

LI : LI 14 => Roles : {AP :H, AP : I } LI : LI 24 => Roles : {AP :H}
L : L 13 => ID : 2 L : L 23 => ID : 2

LI : LI 15 => Roles : {CP : L , CP :M, CP :N} LI : LI 25 => Roles : {CP : L , CP :Y}
LI : LI 16 => Roles : {AP :O}

L : L 14 => ID : 2
LI : LI 17 => Roles : {CP : P}

L : L 15 => ID : 3 L : L 24 => ID : 3
LI : LI 18 => Roles : {CF :Q} LI : LI 26 => Roles : {CF : Z}

weight0 = 1.48/5.08 = 0.29
weight1 = 1.3/5.08 = 0.26
weight2 = 1/5.08 = 0.2

(7)

Next we recursively compare each level, its instances and
the roles which its associated to.

sim(inst1, inst2) = simLI(root11, root21) · weight0
+simL(L11, L21, 1) + simL(L15, L24, 1)

(8)
Level comparison at depth 1:

simL(L11, L21, 1) = (simLI(LI11, LI21)
+simLI(LI14, LI24) + simLI(LI16, null)) · weight1 · 1/3
+(simL(L12, L22, 2) + simL(L13, L23, 2)
+simL(L14, null, 2))

simL(L15, L24, 1) = simLI(LI18, LI26) · weight1 · 1/1
(9)

Level comparison at depth 2:

simLI(LI11, LI21) = 1
simLI(LI14, LI24) = 0.5
simLI(LI16, null) = 0
simL(L12, L22, 2) = (simLI(LI12, LI22)
+simLI(LI13, LI23)) · weight2 · 1/2
simL(L13, L23, 2) = (simLI(LI15, LI25)) · weight2 · 1/1
simL(L14, null, 2) = 0
simLI(LI18, LI26) = 0

(10)
Comparison of the tree leaves:

simLI(LI12, LI22) = 0.66
simLI(LI13, LI23) = 0
simLI(LI15, LI25) = 0.33

(11)

Solving the equation brings to the following result:

sim(inst1, inst2) = 1 · 0.29 + 0.262 + 0 = 0.552 (12)

The similarity score between the two DP instances is equal
to 55.2%.

VI. CONCLUSION

In this paper we presented a web application helping
the design pattern detection community having a way to
compare the results produced by the tools and the techniques
that have been proposed in the literature.

Our final intent is not only the tool “competition” but
also the creation of a container for design pattern instances
that, through the users’ voting, will allow us to build a
large and “community validated” dataset for the testing and
benchmarking of DPD tools.

For all these reasons we are convinced that this kind
of application can be really valuable in this research area
because it allows the real sharing of information and knowl-
edge among all research groups interested in design patterns
for both reverse and forward engineering.

In future work we are interested in integrating different
comparison algorithms, maybe suggested and discussed with
the DPD community, in order to let the users choose the
algorithm they think is the most appropriate. We are also
investigating the possibility to expose some kind of web
services in order to provide a mechanism for making the
tools able to automate the loading of their analysis into the
application. Moreover we are interested to experiment the
correctness and completeness of our approach, exchanging
data with other applications and models as those cited in
Section II.

Other further efforts will be directed towards the creation
of a more complete documentation, including examples
and case studies. Our priority will be to provide a clear
explanation on how to manage and interpret the different
results generated by the application.

We are planning to add new results coming from as many
tools as possible. We are currenly collaborating with several
authors to help them sharing their results. Among them there
are Binun and Kniesel, authors of the DPJF tool [23].

We will also continue improving overall usability, fo-
cusing on accessibility, affordability and portability (as de-
scribed in a paper by Sim et al. [24]).

ACKNOWLEDGMENT

The authors would like to kindly thank Günter Kniesel,
Nikos Tsantalis and Yann-Gaël Guéhéneuc for all their
useful suggestions and great support in our research.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[2] A. De Lucia, V. Deufemia, C. Gravino, and M. Risi, “Design
pattern recovery through visual language parsing and source
code analysis,” Journal of Systems and Software, vol. 82,
no. 7, pp. 1177–1193, 2009.

[3] H. Huang, S. Zhang, J. Cao, and Y. Duan, “A practical pattern
recovery approach based on both structural and behavioral
analysis,” Journal of Systems and Software, vol. 75, no. 1-2,
pp. 69–87, 2005.

[4] M. von Detten, M. Meyer, and D. Travkin, “Reverse engineer-
ing with the reclipse tool suite,” in ICSE ’10: Proceedings of
the 32nd ACM/IEEE International Conference on Software
Engineering. New York, NY, USA: ACM, 2010, pp. 299–
300.

[5] R. A. Olsson and N. Shi, “Reverse engineering of design
patterns from java source code,” in ASE ’06: Proceedings of
the 21st IEEE/ACM International Conference on Automated
Software Engineering. Washington, DC, USA: IEEE Com-
puter Society, 2006, pp. 123–134.

[6] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T.
Halkidis, “Design pattern detection using similarity scoring,”
IEEE Trans. Softw. Eng., vol. 32, no. 11, pp. 896–909, 2006.

[7] Y.-G. Guéhéneuc, “Ptidej: Promoting patterns with patterns,”
in Proceedings of the 1st ECOOP workshop on Building a
System using Patterns, M. E. Fayad, Ed. Springer Verlag,
July 2005, 9 pages.

[8] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and
J. Welsh, “Towards pattern-based design recovery,” in ICSE
’02: Proceedings of the 24th International Conference on
Software Engineering. New York, NY, USA: ACM, 2002,
pp. 338–348.

[9] J. Dietrich and C. Elgar, “Towards a web of patterns,” Web
Semantics: Science, Services and Agents on the World Wide
Web, vol. 5, no. 2, pp. 108–116, 2007, software Engineering
and the Semantic Web.

[10] Y.-G. Guéhéneuc and G. Antoniol, “DeMIMA: A multilay-
ered approach for design pattern identification,” IEEE Trans.
Softw. Eng., vol. 34, pp. 667–684, 2008.

[11] F. Arcelli Fontana and M. Zanoni, “A tool for design pattern
detection and software architecture reconstruction,” Informa-
tion Sciences, vol. 181, no. 7, pp. 1306–1324, April 2011.

[12] F. Arcelli Fontana, M. Zanoni, and A. Caracciolo, “A bench-
mark platform for design pattern detection,” in Proceedings of
The Second International Conferences on Pervasive Patterns
and Applications PATTERNS 2010, IARIA. Lisbon, Portugal:
Think Mind, November 2010, pp. 42–47.

[13] L. Fulop, R. Ferenc, and T. Gyimothy, “Towards a benchmark
for evaluating design pattern miner tools,” in Proceeding of
the 12th European Conference on Software Maintenance and
Reengineering (CSMR 2008), 1-4 2008, pp. 143–152.

[14] Y.-G. Guéhéneuc, “Pmart: Pattern-like micro architecture
repository,” in Proceedings of the 1st EuroPLoP Focus
Group on Pattern Repositories, M. Weiss, A. Birukou, and
P. Giorgini, Eds., July 2007.

[15] G. Kniesel and A. Binun, “Standing on the shoulders of
giants - a data fusion approach to design pattern detection,”
in Proceedings of IEEE 17th International Conference on
Program Comprehension (ICPC ’09.). IEEE Computer
Society, 2009, pp. 208–217.

[16] G. Kniesel, A. Binun, P. Hegedűs, L. J. Fülöp, N. Tsantalis,
A. Chatzigeorgiou, and Y.-G. Guéhéneuc, “DPDX—towards
a common result exchange format for design pattern detection
tools,” in Proceedings of 14th European Conference on Soft-
ware Maintenance and Reengineering (CSMR 2010), March
2010, pp. 232–235.

[17] ESSeRE, “Browse section,” Web Site, 2010, http://essere.
disco.unimib.it:8080/DPBWeb/faces/Browse.jsp.

[18] ——, “Design pattern benchmark platform,” Web Site, 2010,
http://essere.disco.unimib.it/DPB/.

[19] F. Arcelli, C. Tosi, and M. Zanoni, “A benchmark proposal
for design pattern detection,” in Proceedings of 2nd Workshop
on FAMIX and Moose in Reengineering (FAMOOSr 2008),
Antwerp, Belgium, 2008, pp. 24–27.

[20] Y.-G. Guéhéneuc, H. Sahraoui, and F. Zaidi, “Fingerprinting
design patterns,” in Reverse Engineering, 2004. Proceedings.
11th Working Conference on, nov. 2004, pp. 172–181.

[21] ESSeRE, “Design pattern analysis schema definition,” Web
Site, 2010, http://essere.disco.unimib.it:8080/DPBWeb/faces/
resources/DpAnalysis.xsd.

[22] ——, “Design pattern definitions documentation,” Web Site,
2010, http://essere.disco.unimib.it:8080/DPBWeb/faces/Doc
DpDef.jsp.

[23] A. Binun and G. Kniesel, “Joining forces for improving preci-
sion and recall of design pattern detection,” in Proceedings of
the 16th European Conference on Software Maintenance and
Reengineering (CSMR2012), Szeged, Hungary, March 2011.

[24] S. Sim, S. Easterbrook, and R. Holt, “Using benchmarking
to advance research: a challenge to software engineering,” in
Software Engineering, 2003. Proceedings. 25th International
Conference on, may 2003, pp. 74 – 83.

